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Abstract Nucleic acids bearing glycans of various struc-
tures have been under vigorous investigation in the past
decade. The carbohydrate moieties of such complexes
can serve as recognition sites for carbohydrate-binding
proteins—lectins—and initiate receptor-mediated endocy-
tosis. Therefore, carbohydrates can enhance cell targeting
and internalization of nucleic acids that are associated with
them and thus improve the bioavailability of nucleic acids
as therapeutic agents. This review summarizes nucleic acid
glycosylation in nature and approaches for the preparation
of both non-covalently associated and covalently-linked
carbohydrate-nucleic acid complexes.
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Introduction

In the past two decades, nucleic acids have been investi-
gated as potential therapeutic agents in various forms,
including gene therapy, antisense oligonucleotides, antigene
oligonucleotides, aptamers, and RNA interference (RNAi)
[1]. Yet, their effectiveness has so far been hampered by a
number of limitations. As nucleic acids are relatively large
molecules with multiple negative charges, their cellular
uptake is inefficient, resulting in poor bioavailability. In
addition, cell targeting by these molecules is not specific.
Research in nucleic acid chemistry has so far resulted in
many structural modifications. These analogues included
backbone, base residue, and internucleotide linkage modi-

fied nucleic acids. These modifications confer a wide
variety of novel properties to nucleic acids, such as
enhanced resistance to nucleases, increased ability to
hybridize with complementary sequences, and higher
efficiency in penetration through cell membranes.

In order to improve the cell uptake efficiency of nucleic
acids, and consequently their bioavailability, a recent
development in this area focuses on receptor-mediated
endocytosis. In this approach, nucleic acids are either
associated with a carbohydrate moiety non-covalently or
directly linked to carbohydrate residues covalently. These
carbohydrate residues can be recognized by cell surface
carbohydrate-binding proteins–lectins. The interaction be-
tween lectins and carbohydrates then mediates the internal-
ization of nucleic acids through receptor-mediated
endocytosis. This strategy was termed glycotargeting [2]
and has been demonstrated in many examples where
carbohydrates served as the “magic bullet” and enhanced
cellular uptake of nucleic acids that are associated with the
glycans. In this review, the two major strategies that utilize
the interactions between glycans and lectins to tackle the
drug delivery problem of nucleic acids are summarized. In
these strategies, a carbohydrate moiety can be non-
covalently associated with nucleic acids, either directly or
through a carrier molecule. Alternatively, the carbohydrate
moiety can be directly linked to nucleic acids through
covalent bond formation. Some of the chemistries involved
in carbohydrate-oligonucleotide conjugate preparation were
summarized in a recent review [3].

Natural occurrence and possible roles
of sugar modified nucleosides

The occurrence of glycosylated nucleic acids is not as
widespread as that of glycoproteins and glycolipids; howev-
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er, they do occur naturally, especially in bacteriophages and
simple eukaryotes. One of the most common occurrences of
glycosylation involves b-D-glucosylhydroxymethyluracil
(as in 1), or base J as it is known in the literature [4]. This
base modification is found in some simple eukaryotes, such
as Euglena gracilis [5] and Trypanosoma brucei which is
the species causing African Sleeping disease [6]. In fact,
base J has been detected in all species of the trypanozoon
group [7]. In T. brucei, nucleoside J is found mostly in
repetitive sequences such as the telomeric GGGTTA repeats
and in the telomeric variant surface glycoprotein gene
(VSG) expression sites involved in antigenic variation [6].
Although the functions of this base modification are not
fully understood, it is hypothesized that J-modification
may be involved in the translational repression of VSG gene
expression and as a consequence antigenic variation [6, 8–
11]. Proteins that bind duplex DNA containing J nucleoside
(J-DNA) have been identified [9, 12, 13], and these J-
binding proteins (JBP) may be involved in antigenic
variation. The JBPs have been shown to interact with the
major and minor grooves of J-DNA helixes at the J
modification site and its immediate vicinity [14, 15]. In E.
gracilis, the presence of nucleoside J is more uniform and is
not localized in the telomeric repeats [5].
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Another major naturally-occurring glycosylated nucleo-
side is glucosylated hydroxymethylcytidine. This modifica-
tion was first identified in T-even bacteriophages [16, 17].
5-O-Mono-, di-, and tri-glucosylated hydroxylmethylcyti-
dines 2 were identified in E. coli phages T2, T4, and T6. In
these phages, the occurrence of glucosylated DNA sequen-
ces accounts for about 1% of the total sequences [18, 19].
Glycosylation in these species increases the resistance of
the phage DNA towards deoxyribonucleases [20].
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In Rhizobium phage RL38JI, deoxycytidine is replaced
by as many as three hexosylated modified base residues
[21]. In B. subtilis phage SP15, a more complex sugar
residue 3 was identified to be covalently linked to uracil
[22, 23]. In these phages, 62% of the thymine residues are
replaced by 5-(4′,5′-dihydroxypentyl)uracil (as in 3) with
attachment to a phosphoglucuroniate via a phosphodiester
linkage to one of the hydroxyl groups of the pentyl side
chain (as in 3).
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In the RNA series, nucleoside queuosine (Q) derivative
4a, which is a 7-deazaguanosine derivative with a cyclo-
pentenediol side chain at C7 [24], was isolated from various
organisms, including several mammals, starfish, linguals,
hagfish, and wheat germ [10, 25]. These Q ribonucleosides
can be glycosylated by either D-galactose (as in 4b) or D-
mannose (as in 4c) in the β configuration [26].
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Members of the Q nucleoside family are located at the
first position of the anticodon (position 34) in bacterial and
eukaryotic tRNAs that are specific for only four amino
acids (Tyr, His, Asp, and Asn) [27, 28]. However,
galactosyl (4b) and mannosylqueuosines 4c are only found
in animal tRNAs.

The biological functions of glycosylated queuosines are
not clear. However, based on the crystal structure of tRNA
(asp) and a tRNA-tRNA-mRNA complex model, it was
speculated that queuosine modification may serve as a
structurally restrictive base for tRNA anticodon loop
flexibility [29].
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Nucleic acid delivery techniques

The phospholipid bilayer, which is the major component of
cell surfaces, poses a significant barrier to the movement of
ions. When designing a delivery methodology for nucleic
acid therapeutics, three considerations need to be addressed:
total uptake, uptake kinetics, and subcellular distribution.
Nucleic acids are multiply-charged macromolecules. Be-
cause of the electrostatic repulsion between these negative
charges and the negative charges on cell surfaces, cellular
uptake of nucleic acids in general is inadequate and
inefficient. In addition, from the pharmocokinetic point of
view, uptake of nucleic acids tends to be slow, which
extends exposure of nucleic acids to physiological con-
ditions before they reach the target intracellular compart-
ments. This slow uptake represents another difficulty for
nucleic acids to be useful as therapeutic agents, i.e. a higher
possibility to be degraded by nucleases. The resulting low
bioavailability represents one of the major obstacles in
nucleic acid-based therapies. Several mechanisms have been
identified for nucleic acids to penetrate through cell
membranes, including receptor-mediated endocytosis, ad-
sorptive endocytosis, fluid-phase pinocytosis, and traffick-
ing through cell membrane nucleic acid channels [30–33].
Depending on the mechanism of entry into cells, the
subcellular fate of nucleic acids varies. In receptor-mediated
endocytosis, for example, nucleic acids are encapsulated in
endosomes after they are internalized. Most endosomes fuse
with membrane-bound organelles, known as lysosomes.
These nucleic acid molecules must now escape endosomes
or lysosome membranes to reach their target compart-
ments. It is speculated that nucleic acid leakage from
endosomes or lysosomes can be facilitated by proteins
present in these organelles. In addition, when endosomes
fuse with other subcellular compartments, nucleic acids
can also leak from endosomes. So far, a number of
delivery vehicles have been investigated to improve the
internalization efficiency of nucleic acids, including the
use of carriers such as liposomes, peptides, and viral
vectors. These techniques have been extensively reviewed
elsewhere [1, 34–43]. In this section, nucleic acid delivery
using carbohydrates as mediators will be discussed.

Lectins are proteins that recognize and bind to carbohy-
drates with high specificity. These carbohydrates can be a
sugar itself, but they can also be the glycan moiety of
glycosylated proteins or lipids. Lectins were found actively
to direct their specific ligands to intracellular compartments,
including endosomes, lysosomes and the Golgi apparatus.
The idea of using lectin-glycan interactions to mediate cell
targeting and cellular uptake of molecules has been under
intense investigation during the past two decades [44, 45].
Two distinct strategies can be used for lectin-mediated drug
delivery. In the first approach, drug molecules can be

associated with a lectin, and the complexes formed can
target the glycoprotein or glycolipids on the cell surface.
Subsequent interactions between the lectin-glycoprotein (or
glycolipid) facilitate the internalization of the drug mole-
cules. Conversely, the drug molecules can be associated with
a glycan moiety that is recognized by lectins on the surface of
the target cells. The second approach utilizes endogenous
cell surface lectins and would be more attractive because
expensive lectins are not involved in the formulation of the
delivery system. When a specific ligand comes in contact
with the cell surface lectins, lectins may or may not be
endocytozed depending on their structure and sugar-binding
specificity. Because lectins recognize the terminal sugar
residues of glycosylated ligands, endocytosis is not substan-
tially influenced by the size and composition of the aglycone
moiety of the ligand. These features allow for controls on the
cellular uptake and intracellular trafficking. One important
consideration in designing a glycotargeting strategy is the
binding affinity because the drug delivery system must
compete with other endogenous ligands existing in vivo. In
general, in order for glycotargeting to work efficiently,
multivalent glycans are normally required. Generally,
mono- and bivalent ligands do not have high enough
binding affinity to achieve appreciable glycotargeting [46].

A nucleic acid delivery system that exploits the interactions
between glycans and lectins is a relatively recent technique.
The first such approach towards receptor-mediated endocyto-
sis of nucleic acids was implemented byWu andWu [47–49].
In their pioneering study, asialoorosomucoid was coupled to
poly-L-lysine to form an asialoorosomucoid-poly-L-lysine
conjugate. Then plasmid pSV2 CAT was complexed to the
conjugate through electrostatic interactions between polyly-
sine and the plasmid. This complex was then added to
cultures of hepatoma cells which do or do not express
asialoglycoprotein receptors. It was found that in cultured
hepatoma cells devoid of the receptors, no transformation was
detected; however, in the presence of the receptors, incuba-
tion of the cells with the complex led to transformation of the
cells. Furthermore, when the individual component of the
complex was incubated with cells containing the receptor, no
detectable transformation was observed. This finding led to
the establishment of the potential of lectin-ligand interactions
in nucleic acid delivery. Following these observations, many
different variations have been developed. These variations
can be broadly categorized into either non-covalent carbohy-
drate-nucleic acid complexes or carbohydrate-nucleic acid
conjugates.

Non-covalent carbohydrate-nucleic acid complexes

The first approach that has been under intense research for
lectin-mediated nucleic acid delivery is through the forma-
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tion of carbohydrate-nucleic acid complexes non-covalent-
ly. A number of methods have been developed that take
advantage of electrostatic interactions, protein-ligand inter-
actions, and DNA intercalation. The name “glycoplexes”
has been given to these complexes brought together
through non-covalent interactions.

Complex formation through ionic interactions

Work in this area is largely based on association of
negatively-charged nucleic acids with glycosylated carriers
bearing cations. The principle for this methodology is that
positively charged carriers interact with the negatively
charged nucleic acids electrostatically to form compact
particles called toroids. When the polycationic carriers are
linked to glycan ligands of the receptor, it is then possible
to achieve cell specific targeting and enhance the uptake of
nucleic acids through receptor-mediated endocytosis.

Polylysine

One such approach involves the preparation of glycosylated
polypeptides that bear multiple positive charges [50]. In a
commonly used strategy, polylysines are glycosylated at the
ɛ-amino groups of some side chains with specific glycans
(Fig. 1). These glycosylated polylysines were shown to
help with the internalization of nucleic acids in cell
cultures. The efficiency can be further increased by using
a helper agent such as chloroquine [51] or a helper peptide,
for example a peptide whose sequence resembles the N-
terminal influenza hemagglutinin HA2 [52]. These helper
agents presumably help the exit of the glycoplexes from the
endosomes [52]. In order for the glycoplexes to work
efficiently, the size of the polylysine and the number of
glycosylation sites are critical. Smaller polylysines having
about 200 lysine residues, with one third of the ɛ-amino
groups glycosylated, were shown to have higher nucleic
acid transfection efficiency.

A number of different versions of glycosylated polyly-
sine-nucleic acid complexes have been reported [53, 54].
For example, an ethylene glycol spacer can be inserted in

between the polylysine backbone and glycans (Fig. 2).
Addition of the polyethylene glycol (PEG) spacer was
shown to increase the solubility of the complexes. Transfec-
tion experiments showed that the lactose-PEG-polylysine
complexes efficiently delivered DNA to a hepatoma cell line
in vitro. Additionally, as the lactose-PEG substitution content
increased up to 30%, the transfection efficiency increased.
This observation clearly demonstrated that lactose served as
the targeting moiety. In the meantime, this delivery system
showed lower cytotoxicity compared to that of poly-L-
lysine. The use of chloroquine again increased transfection
efficiency, which indicates the involvement of hydrolytic
degradation of the system in lysosomes [53].

Complexation of nucleic acids with glycosylated poly-
lysines was also shown to increase the stability of nucleic
acids towards nucleases. In a controlled experiment using
plasmids that are either complexed or not-complexed with
asialoorosomucoid-polylysine [55], the complexed DNA
was protected from serum nucleases. Degradation of single-
stranded nucleic acids was inhibited 3- to 6-fold in serum
during 5 h of incubation. For complexed plasmids, greater
than 90% of the plasmids remained full-length during 1.5
and 3 h incubations in serum or culture medium containing
10% serum, respectively. Plasmids that are not complexed
with glycosylated polylysines were completely degraded
after 15 min in serum or 60 min in medium.

Despite the advantages polylysines have as nucleic acid
carriers, a number of problems associated with the use of
polylysine were noted, for example heterogeneity of the
complex [56], tedious quality control procedures [57], poor
solubility [49], and variability in the efficacy of complexes
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Fig. 1 Glycosylated polylysine
in ɛ-amino groups of some side
chains with specific glycans
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Fig. 2 An ethylene glycol spacer inserted in between a polylysine
backbone and glycan
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to effect delivery of nucleic acids to tissues bearing the
receptors [58, 59].

Glycosylated polyamines

In addition to polylysines, other synthetic polycationic
amines were developed as nucleic acid carriers. Among
these, polyethylenimines (PEI) [60] (Fig. 3) have received a
lot of attention due to their ability to compact large nucleic
acids into small particles. In PEIs, because every third atom
bears a positive charge, the molecules have a high capacity
to interact with the negatively charged nucleic acids. In
addition to this, PEIs are highly soluble in water. Use of
PEIs as plamid carriers was shown efficiently to transfect a
selection of cell types [61–70]. However, when PEIs were
used as carriers for antisense oligonucleotides, the com-
plexes were so stable that after their uptake by cells, the
antisense oligonucleotides were not released from the
complexes efficiently; therefore they were not able to
hybridize and show antisense activity [71]. In addition to
this drawback, PEIs are highly toxic. It was found that after
internalization of the complexes, PEIs eventually were
localized in the nuclei, where they may interfere adversely
with the host genes [72].

Polycationic dendrimers and other polymers

Polycationic dendrimers were also considered as nucleic
acid carriers for the preparation of glycoplexes [73, 74]
because of the flexibility in the design of carrier structures.
Starburst dendrimers (Fig. 4) were used as the “catch” for

the negative charges of nucleic acids [75]. Glycans can be
attached to the dendrimer, for example through disulfide
bonds (as in Fig. 4). The transfection efficiency of this
system seemed to vary depending on the cell types, from
less than 1% transfection in EL-4 and Jurkat to up to 80%
transfection in CV-1.

Glycosylated block copolymers containing both cationic
polymer and PEG were also developed as nucleic acid
carriers. The terminal carboxylic group of poly(2-(dimeth-
ylamino)ethyl methacrylate-co-N-vinyl-2-pyrrolidone) was
first covalently linked to polyethylene glycol-bis(amine)
(Fig. 5). The remaining free amino group then underwent
reductive amination with lactose. The resulting glycosylated
copolymer was used as a carrier to transfect HepG2 human
hepatocarcinoma cells with luciferase plasmids. The termi-
nal galactose residues were found greatly to enhance the
transfection efficiency [76].

One important factor when designing cationic molecules
that bind with oligonucleotides non-covalently is their
binding affinity and ease to dissociate once they are at the
target organelles. Thus, these cationic carriers must be able
to bind nucleic acids with relatively high affinity in order to
form stable complexes; however, once they reach their
targeted subcellular compartment, dissociation must occur
relatively readily in order for nucleic acids to function. A
recent study examined the effect of oligonucleotide struc-
tures on the binding between cationic macromolecules and
oligonucleotides. It was demonstrated that oligonucleotides,
which are more structured, tend to bind cationic molecules
more strongly [77]. Another consideration with the use of
polycationic carriers is their cytotoxicity. On one hand,
polycationic carriers should have sufficient number of
positive charges to neutralize the negative charges of nucleic
acids in order to facilitate their internalization; on the other
hand, polycations are associated with cytotoxicity. There-
fore, polycationic carrier-nucleic acid ratios need to be
optimized.
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Complex formation through protein-ligand interactions

Alternatively, if nucleic acids bear a ligand that is recognized
by a carrier molecule, then the nucleic acid can also associate
with the carrier molecule through specific binding. In this
approach, carrier proteins can be first glycosylated to form
neoglycoproteins. These neoglycoproteins will then interact
with their ligands that are covalently linked to nucleic acids
to form complexes. One such example harnesses the inter-
action between streptavidin and biotin (Fig. 6) [78–80]. In
this example, mannosylated streptavidin and biotinylated
oligonucleotides are first prepared. Mixing of these two
species then resulted in formation of glycoplexes associated
through the tight interaction between streptavidin and
biotin. When this glycoplex was used to deliver dodecakis
(α-deoxythymidylate) [(α-dT)12] to macrophages, a 20-fold
increase in intracellular concentration of the oligonucleotide
was observed compared with free oligonucleotide [78].

Complex formation through nucleic
acid-intercalator interaction

Another interesting approach towards the formation of
glycoplexes takes advantage of the interactions between
nucleic acids and DNA intercalators. In one such example,
spermidine-bisacridine (as in 5), a known DNA bis-
intercalator, was derivatized with galactose residues [81].
This type of intercalation provides tight binding and a slow
dissociation rate, which are two important considerations
for the formation of stable noncovalent complexes. Inter-
actions between bisacridine and nucleic acids resulted in
the formation of a glycan-DNA complex. The trigalactosy-
lated bisacridine carrier 5 was found to mediate the binding

of DNA to both ricin lectin and to the asialoglycoprotein
receptor on primary hepatocytes. However, on the basis of
luciferase expression, a trigalactosylated bisacridine-plas-
mid complex did not induce transfection of the hepatocytes,
which is probably due to lack of membrane destabilizing
functions in the complex [81].

Complexation through nucleic acid-polysaccharide
interaction

Another approach to the preparation of carbohydrate-
nucleic acid complexes is to utilize the ability of some
polysaccharides to interact with nucleic acids. In one of
these examples, the polysaccharide schizophyllan, an
extracellular polysaccharide secreted by the fungus Schiz-

oligonucleotidebiotinglycan streptavidin

Fig. 6 Interaction between streptavidin and biotin
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ophyllan commune with b-(1→3)-D-glucan main chain and
one b-(1→6)-D-glycosyl side chain 6 linked to the main
chain at every three glucose residues, was used to bind
oligonucleotides. In aqueous solution, schizophyllan exists
in a triplex state; however, in dimethyl sulfoxide (DMSO),
the triplex can be denatured into single-stranded “random
coils”. The denatured random coils can be renatured when
water is added to the DMSO solution. Remarkably, the
random coils of schizophyllan can interact with single-
stranded DNA to form duplexes (Scheme 1). The complex
protects the single-stranded DNA from being digested by
nucleases. Due to the lack of β-1,3-glucanase in mammals,
the complex has a long circulation time in blood. Another
advantage of using schizophyllan to form complexes with
single-stranded DNA is that the polysaccharide is a poor
immunogen, and thus does not elicit immune response.
Schizophyllan itself does not bind to the plasma membrane
and induce endocytosis or other internalization processes.
However, the polysaccharide can be modified by reductive
amination (Scheme 2) to introduce a carbohydrate moiety
that can be recognized by receptors. For instance, schizo-
phyllan can be treated with periodate to generate aldehyde
functions at the side chain glucose residues. Reductive
amination is then carried out by first treating the oxidized
schizophyllan with a bisamino(polyethyleneglycol) that has
been derivatized with lactose, and then with sodium

cyanoborohydride. This sequence of reactions introduces
lactose into schizophyllan (as in 7), which on one hand can
associate with DNA, and on the other hand can be recog-
nized by asiaoglycoprotein receptors [82–89].

The efficiency of b-lactoside-appended schizophyllan as
antisense oligonucleotide delivery carrier was demonstrated
in human hepatocytes [89]. Because schizophyllan does not
form complexes with short and hetero-oligonucleotides, an
oligonucleotide phosphorothioate sequence that is known to
bind to c-myb mRNA was first tagged to poly(A)40 (5′-GT
GCCGGGGTCTTCGGGC-(A)40-3′). After hepatocytes cell
culture was incubated with the lactosylated schizophyllan—
c-myb antisense oligonucleotide-poly(A)40 complex for 2
days, viable cell number counts were significantly smaller
than when the culture was treated with control where no
lactoside was appended to schizophyllan [89]. The increased
antisense activity was attributed to (1) the protection of the
oligonucleotides through complexation [90], and (2) inter-
actions between hepatocytes and the complexes.

Carbohydrate-nucleic acid conjugates

The other general strategy that utilizes lectin-carbohydrate
interactions for the delivery of nucleic acids is to introduce
covalent linkages between carbohydrates and nucleic acids.
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Compared with the non-covalent association, the carbohy-
drates and oligonucleotides are now linked by covalent
bonds. Conjugates produced by this approach are likely to be
more homogeneous and easier to characterize compared with
the carbohydrate-nucleic acid complexes. However, the
covalent linkages in some cases do present steric effects on
the conformation of nucleic acids and can affect their binding
properties with complementary sequences. Additionally, the
preparation of covalent conjugates can sometimes present
significant synthetic challenges. So far, a number of systems
have been investigated in connection with the preparation of
carbohydrate-nucleic acid conjugates.

Coupling of sugar phosphoramidites with oligonucleotides

One of the most straightforward methods for the introduction of
a carbohydrate moiety into an oligonucleotide sequence is
through the coupling of a sugar phosphoramidite 8 with
oligonucleotides on solid supports. This method was first
demonstrated by Akhtar et al. in the preparation of mannose
phosphoramidite and the subsequent incorporation of man-
nose into a 15-mer oligoribodeoxynucleotide 9 through phos-
phoramidite chemistry-based solid phase synthesis (Scheme 3)
[91]. The study was undertaken in an attempt to enhance the
uptake of antisense oligonucleotides by macrophages through
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receptor-mediated endocytosis due to the fact that macrophages
express high levels of cell-surface mannose-binding lectins.

Subsequently, this approach was demonstrated in a
number of other studies (Fig. 7) [92–94]. It provides a
general and versatile means to introduce covalent linkages
between glycans and oligonucleotides. However, due to the
relative difficulty with complex carbohydrates, this ap-
proach is rather limited to conjugate formation between
oligonucleotides and simple carbohydrates.

Alternatively, carbohydrate moieties can be first immo-
bilized on solid supports, followed by oligonucleotide
assembly using the standard phosphoramidite chemistry. A
number of examples were demonstrated by Montesarchio et
al. [95–98]. In one of these examples [97], a sucrose moiety
was first attached to the solid support, and this was
followed by oligonucleotide synthesis using the standard
phosphoramidite chemistry (Scheme 4). It was found that

the sucrose units at selected oligonucleotide sequences did
not interfere with duplex formation or with the ability of G-
rich sequences to adopt a quadruplex structure. In the
meantime, the presence of the sucrose moiety increased the
chemical and enzymatic stability of the oligonucleotides.

One obvious drawback to this approach is that immobi-
lization of carbohydrates on solid supports tends to be less
efficient and requires tedious protection strategies.

Enzymatic elaboration of carbohydrate moiety
of a glycosylated oligonucleotide

Using phosphoramidite chemistry, simple carbohydrate
residues can be readily incorporated into oligonucleotides.
However, in order to introduce complex carbohydrate
structures, laborious protection and deprotection strategies
are required. Additionally, glycosylation can be very
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challenging in some cases. One way to bypass these
difficulties is to utilize the glycosyltransferases that are
becoming increasingly available. The first such approach
was demonstrated by Wang and Shepperd in the chemo-
enzymatic synthesis of LeX-conjugated oligonucleotides
(Scheme 5) [99]. In order to furnish a LeX trisaccharide
(Galβ1-4(Fucα1-3)GlcNAc) structure on an oligonucleo-
tide, the reducing end of GlcNAc was first attached to the
oligonucleotide using standard phosphoramidite chemistry.
The resulting conjugate 10 was then subjected to enzymatic
glycosylation effected by b-1,4-galactosyltransferase and α-
1,3-fucosyltransferase using the appropriate sugar nucleo-
tides as donors to give lactosylated 11 and LeX-derivatized
12 conjugates. Modification of oligonucleotides by the
introduction of a carbohydrate residue at the 5’-position did
not affect their hybridization properties. Additionally, the
LeX conjugated oligonucleotides were favourably recog-
nized by antibody specific for LeX.

Derivatization from the nucleoside base residues

Sugar derivatization of oligonucleotides can also be achieved
by covalently linking a sugar moiety to the purine or

pyrimidine base residues through a linker. This method was
demonstrated by Kobayashi et al. in the synthesis of galactose-
derivatized oligonucleotides [100–102]. First, suitably pro-
tected galactose derivatized with an alkyne function 13 is
reacted with suitably protected 5-iododeoxyuridine 14
through a palladium-mediated coupling reaction to introduce
a covalent bond between the galactose and uridine moieties.
Conversion of the product 15 into its phosphoramidite 16 is
then followed by solid-phase synthesis using standard
phosphoramidite chemistry (Scheme 6). The method allows
for the convenient introduction of sugar residues at prede-
fined locations of the oligonucleotides. The resulting glyco-
conjugate is readily recognizable by galactose-binding lectins.

Diazocoupling

Linkages between glycans and nucleic acids can also be
generated through azo functions. In the reported studies, the
azo functional groups were introduced at the C8-position of
guanosine (as in 17) [103, 104]. This allows for incorporation
of multiple glycosylation sites into plasmids (Scheme 7). In
addition, this modification seemed to have little impact on the
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complementarity of the base pairs because the C8-position of
guanine faces the major groove of DNA duplexes [105].
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The conjugates formed showed higher melting temper-
ature and stronger nuclease resistance both to exo- and
endonucleases than native plasmids. They were also able to
bind to galactose-specific lectin RCA120 specifically with
relatively strong binding affinity.

Oximation

Another efficient conjugation method involving reactions
between aminooxy sugars and activated carbonyl functions
was first undertaken by DeFrancq et al. [106]. The aldehyde
functions on oligonucleotides 19 are generated by periodate
oxidation of terminal 1,2-diols in 18. Treatment of the
oligonucleotide aldehyde 19 with aminooxysugar 20 leads
to the formation of oxime ethers (Scheme 8) very efficiently
in aqueous solution at pH 4.6. The oxime linkages are
stable at pH 7.0 for over 72 h. Using this approach, 3′,5′-
bisconjugation through an oxime bond formation was
achieved [107, 108].

Using a modified version of this approach, it is also
possible to carry out the conjugation on solid support. First,
aminooxy functions can be incorporated onto a solid
support in a protected form as in 22. When a masked
aminooxy function is treated with an aldehyde 23 in the
presence of hydrazinium acetate, an oxime ether (as in 24)

formed in a site-specific manner. The product 24 can
survive the ammonolytic conditions that are required for the
cleavage of the olignucleotides from solid-support
(Scheme 9). Melting point studies showed that the
hybridization abilities of the conjugates 25 are comparable
to those of the unmodified oligonucleotides [109].

This chemistry was recently used to prepare a carbohy-
drate cluster-oligonucleotide conjugate bearing a cyclo-
decapeptide anchor 26 [110]. The binding affinity of the
conjugate with its complementary sequences was retained.
In the meantime, the conjugate showed a greatly enhanced
binding affinity towards concanavalin A lectin, due to the
cluster glycoside effect [111].
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gate preparation, also provides a facile way to form
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to react with amino functional groups followed by
treatment with sodium cyanoborohydride to produce a
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ciently under slightly basic conditions. This method
provides a very mild way to form carbohydrate-oligonu-
cleotide conjugates.

In an example demonstrated by Sando et al. [112],
unprotected carbohydrates 27 (lactose, maltose, cellubiose,
and maltoheptose) were covalently linked to aminoalkyl-
ated oligonucleotides 28 under mild conditions (aqueous
borate buffer, pH 8.0 at 60°C) followed by reduction using
sodium cyanoborohydride to give stable conjugates 29
(Scheme 10). No notable side reactions were detected.

With the development of methods to introduce aldehyde
groups into nucleic acids, as reviewed elsewhere [113], and
the availability of commercial phosphoramidite bearing
aldehyde functions (30 from SoluLink Biosciences and 31
from Link Technologies and Trilink Biotechnologies) [114,
115], it should also be possible to form carbohydrate-
oligonucleotide conjugates by reacting amino sugars with
oligonucleotides bearing aldehyde modifications.

DNA/oligonucleotide delivery in the form of covalent
conjugates with carbohydrates

DNA/oligonucleotide delivery in the form of covalent
conjugates with carbohydrates is not as well explored as
in the form of non-covalent complexes. Compared with
non-covalent complexes, it is possible to prepare chemical-
ly and structurally uniform covalent DNA/oligonucleotide-
carbohydrate conjugates. Because the interaction between
individual carbohydrate and lectin is rather weak, it is often
necessary to construct conjugates bearing multivalent
carbohydrate moieties in order to enhance the affinity.
Ideally these carbohydrate moieties are separated by 4 to 20
Å in order to optimize the binding affinity [116]. Most
system investigated so far target at hepatocytes, but it
should also be possible to extend this strategy to other cell
types, such as macrophages where mannose receptors are
expressed.
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When methylphosphonate oligonucleotides conjugated to
trivalent N-acetylgalactosamine (as in 32) are targeted to
human hepatocellular carcinoma (HepG2) cells, a 20- to 40-
fold increase in cell uptake was observed [117]. Binding
affinity between the conjugates and Gal/GalNAc receptors
was tight, with a Kd of 7 nM. The same trivalent GalNAc
construct was also used to form conjugate with antisense

oligonucleotide that target HBV in hepatoma cells. At 1 μM
concentration, an increase of antisense activity by 20 fold
was observed. When injected to mice from tail vain, rapid
and high uptake of the conjugate was observed in liver [118].
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Oligonucleotides conjugated to tetravalent galactosides
(as in 33) were also used to target the asiaologlycoprotein
receptors on parenchymal liver cells. Compared with non-
conjugated oligonucleotides, hepatic uptake of conjugated
oligonucleotides was far more efficient [119]. The affinity
was in the low nanomolar range. In comparison with non-
glycosylated oligonucleotides, in vivo experiments showed
that hepatic uptake was enhanced from 19 to 77% when
oligonucleotide bearing tetravalent GalNAc moieties is
injected in rats. Additionally, specific oligonucleotide
accumulation in parenchymal liver cells was improved by
60-fold. Meanwhile, the carbohydrate moieties were deter-
mined to be essentially non-toxic at mg/kg concentrations.
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Perspectives

Glycotargeting for nucleic acid delivery represents an
avenue for the incorporation of structural determinants into
nucleic acids. This concept allows for potential cell-specific
targeting and augments the bioavailability of nucleic acids as
therapeutic agents. Because of the specificity the lectins have
towards their carbohydrate ligands, it is possible to develop
nucleic acid delivery platforms based on a structure-function
relationship. This method can be extended to a wide range of
cell types where surface lectins are identified. So far, most
studies have focused on the roles of extracellular lectins. In
addition to the extracellular lectins, intracellular lectins could
also play an important role in enhancing the bioavailability
of nucleic acid therapeutics. These soluble intracellular
lectins can help route nucleic acids to individual cellular
compartments. Further work is also necessary in order to
identify the intracellular fate of the carbohydrate moieties of
the glycoconjugates/complexes.
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